The unique red cell heterogeneity of SC disease: crystal formation, dense reticulocytes, and unusual morphology.

نویسندگان

  • C Lawrence
  • M E Fabry
  • R L Nagel
چکیده

Knowledge concerning SS (homozygous for the beta s gene) red blood cell (RBC) heterogeneity has been useful for understanding the pathophysiology of sickle cell anemia. No equivalent information exists for RBCs of the compound heterozygote for the beta s and beta c genes (SC) RBCs. These RBCs are known to be denser than most cells in normal blood and even most cells in SS blood (Fabry et al, J Clin Invest 70:1284, 1981). We have analyzed the characteristics of SC RBC heterogeneity and find that: (1) SC cells exhibit unusual morphologic features, particularly the tendency for membrane "folding" (multifolded, unifolded, and triangular shapes are all common); (2) SC RBCs containing crystals and some containing round hemoglobin (Hb) aggregates (billiard-ball cells) are detectable in circulating SC blood; (3) in contrast to normal reticulocytes, which are found mainly in a low-density RBC fraction, SC reticulocytes are found in the densest SC RBC fraction; and (4) both deoxygenation and replacement of extracellular Cl- by NO3- (both inhibitors of K:Cl cotransport) led to moderate depopulation of the dense fraction and a dramatic shift of the reticulocytes to lower density fractions. We conclude that the RBC heterogeneity of SC disease is very different from that of SS disease. The major contributions of properties introduced by HbC are "folded" RBCs, intracellular crystal formation in circulating SC cells, and apparently a very active K:Cl cotransporter that leads to unusually dense reticulocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The formation of transferrin receptor-positive sickle reticulocytes with intermediate density is not determined by fetal hemoglobin content.

Erythrocyte dehydration is an important feature of sickle cell disease, leading to increased sickle hemoglobin polymerization and decreased red blood cell survival. Substantial in vivo dehydration appears to occur in reticulocytes or in an even younger subset of reticulocytes that are positive for transferrin receptor. Previous studies have suggested both sickling-dependent and sickling-indepen...

متن کامل

Fetal hemoglobin and potassium in isolated transferrin receptor-positive dense sickle reticulocytes.

A subset of sickle cells have an increased density at the reticulocyte stage of development, indicating that they are either abnormally dense upon release from the bone marrow or become dense quickly in the circulation. These cells are of interest because they most likely have severely disrupted cation regulation and a short lifespan. Based on the distribution of fetal hemoglobin (HbF) in the d...

متن کامل

Ion transport pathology in the mechanism of sickle cell dehydration.

Polymers of deoxyhemoglobin S deform sickle cell anemia red blood cells into sickle shapes, leading to the formation of dense, dehydrated red blood cells with a markedly shortened life-span. Nearly four decades of intense research in many laboratories has led to a mechanistic understanding of the complex events leading from sickling-induced permeabilization of the red cell membrane to small cat...

متن کامل

Unusual presentation of primary mandibular gingival squamous cell ‎carcinoma in young male: A case report

BACKGROUND AND AIM: Squamous cell carcinoma (SCC) is usually considered a disease of older people. Recently, there is a change in the occurrence of such lesions in young patients and lacking the established risk factors. CASE REPORT: A 21-year-old male reported with an innocuous gingival growth over lower incisors since a month. Within 15 days he noticed another gingival growth in same region l...

متن کامل

Rapid increase in red blood cell density driven by K:Cl cotransport in a subset of sickle cell anemia reticulocytes and discocytes.

We have previously demonstrated that young normal (AA) and sickle cell anemia (SS) red blood cells are capable of a volume regulatory decrease response (VRD) driven by a K:Cl cotransporter that is activated by low pH or hypotonic conditions. We now report on the characteristics of young SS cells (SS2, discocytes) capable of rapid increase in density in response to swelling. We have isolated cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 78 8  شماره 

صفحات  -

تاریخ انتشار 1991